
On Streaming and Communication Complexity
of the Set Cover Problem

Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian

Massachusetts Instittute of Technology (MIT)
{edemaine,indyk,mahabadi,vakilian}@mit.edu

Abstract. We develop the first streaming algorithm and the first two-party com-
munication protocol that uses a constant number of passes/rounds and sublin-
ear space/communication for logarithmic approximation to the classic Set Cover
problem. Specifically, for n elements andm sets, our algorithm/protocol achieves
a space bound of O(m · nδ log2 n logm) using O(41/δ) passes/rounds while
achieving an approximation factor of O(41/δ logn) in polynomial time (for δ =
Ω(1/ logn)). If we allow the algorithm/protocol to spend exponential time per
pass/round, we achieve an approximation factor of O(41/δ). Our approach uses
randomization, which we show is necessary: no deterministic constant approxi-
mation is possible (even given exponential time) using o(mn) space. These re-
sults are some of the first on streaming algorithms and efficient two-party com-
munication protocols for approximation algorithms. Moreover, we show that our
algorithm can be applied to multi-party communication model.

1 Introduction

The Set Cover problem is one of the classic tasks in combinatorial optimization. Given
a set of n elements E and a collection of m sets S = {S1, . . . , Sm}, the goal of the
problem is to pick a subset I ⊂ S such that (i) I covers E , i.e., E ⊆

⋃
S∈I S, and subject

to this constraint, (ii) the number of sets in I is as small as possible. Set Cover is a well-
studied problem with applications in many areas, including operations research [7],
information retrieval and data mining [14], web host analysis [2], and many others.

Although the problem is NP-hard, a simple greedy algorithm is guaranteed to report
a solution of size at most O(lnn) larger than the optimum. The algorithm is highly ef-
ficient and surprisingly accurate, with the reported solution size often within the 10%
of the optimum on typical data sets [7]. However, it has been observed that, due to its
sequential nature, the greedy algorithm is significantly less efficient when implemented
on hierarchical, parallel and distributed architectures, which are commonly used nowa-
days for processing massive amounts of data. As a result, there has been considerable
work on algorithms for Set Cover that are optimized for external memory [3], stream-
ing [14,6], and cluster computing [2] architectures.

In this paper we consider Set Cover in three related computational models:

1. Streaming model: In this model, the sets S1, . . . , Sm are stored consecutively in
a read-only repository. An algorithm can access the sets by performing sequential
scans of the repository. However, the amount of read-write memory available to

2

the algorithm is limited, and is smaller than the input size (which could be as large
as mn). The objective is to design an algorithm that performs few passes over the
data, and uses as little memory as possible.

2. Two-party communication model: In this model, the sets are partitioned between
two parties, Alice and Bob. Without loss of generality we can assume that Alice
holds S1, . . . , Sm/2, while Bob holds Sm/2+1, . . . , Sm. The parties communicate
by exchanging messages, with Alice sending her messages to Bob during the odd
rounds, and Bob sending his messages to Alice during the even rounds. The ob-
jective is to design a communication protocol to find a minimum cover of E that
terminates in a few rounds such that the total length of the exchanged messages is
as small as possible.

3. Multi-party communication model: In this model, the sets are partitioned among p
parties that are not allowed to communicate with each other. However, there is a
coordinator that communicates with each of the parties in rounds. In odd rounds,
the coordinator performs some computation and broadcasts a single message to all
of the parties; in even rounds, each party receives the message, performs some local
computation, and sends a message back to the coordinator. Moreover, each party
executes the same algorithm. The objective is to design a communication protocol
to find a minimum cover of E that terminates in a few rounds and that the total size
of the communication is as small as possible.

The first two models are intimately related. Specifically, any p-pass streaming algo-
rithm that uses s bits of storage yields a (2p − 1)-round communication protocol ex-
changing at most (2p− 1)s bits (see e.g., [8]). Thus, any efficient streaming algorithm
induces a good communication protocol, while any lower bound for the communication
complexity provides a lower bound for the amount of storage required by a streaming
algorithm. Understanding the amount of communication necessary to solve problems in
distributed communication complexity settings has been a subject of extensive research
over the last few years, see e.g., [15] for an overview.

The Set Cover problem has attracted a fair amount of research over the last few
years. The upper and lower bounds for the problem are depicted in Figure 1. Note that
the simple greedy algorithm can be implemented by either storing the whole input (in
one pass), or by iteratively updating the set of yet-uncovered elements (in at most n
passes).

Our results. Our main result is an O(41/δ) pass, O(41/δρ)-approximation streaming
algorithm with Õ(m·nδ) space1 for the Set Cover problem, where ρ denotes the approx-
imation factor of an algorithm that solves Set Cover in off-line model. For example, the
greedy algorithm yields ρ = O(log n), while an exponential algorithm yields ρ = 1. In
particular, setting ρ = 1 and 1/δ = 1

2 log log n− 1 implies a 1
4 log n-approximate com-

munication protocol with complexity mnO(1/ log logn). This matches the lower bound
of Nisan [11] up to a factor of no(1).

Furthermore, we show Ω(mn) lower bound for the communication complexity of
any deterministic protocol approximating two-party Set Cover within a constant factor.
Thus, the use of randomness is essential in order to achieve our result.

1 Õ(f(n,m)) is defined as O(f(n,m) · logk f(n,m)).

3

Result Approximation Passes/rounds Space/communication Type

Greedy O(lnn) 1 O(m · n) deterministic algorithm

O(lnn) n O(n) deterministic algorithm

[14] O(log n) O(log n) O(n log n) deterministic algorithm

[6] O(
√
n) 1 Õ(n) deterministic algorithm

[11] 1
2 log n any Ω(m) randomized lower bound

This paper O(41/δρ) O(41/δ) Õ(m · nδ) randomized algorithm2

This paper O(1) any Ω(m · n) deterministic lower bound

Fig. 1. Summary of past work and our results. The algorithmic bounds are stated for the streaming
model, while the lower bounds are stated for the two-party communication complexity model.
We use ρ to denote the approximation factor of an off-line algorithm solving Set Cover, which
is O(lnn) for the greedy algorithm and 1 for the exponential time algorithm. Furthermore, our
result holds for any δ = Ω(1/ logn).

We also show in Appendix A that our algorithm implies anO(41/δ)-roundO(41/δρ)-
approximation communication protocol for multi-party communication model which
communicates Õ(m · nδ + p · n) bits per round.

Our techniques. Our algorithms exploit random sampling. Two variants of sampling
are used, depending on the size OPT of the minimum cover. If OPT is large, we use
set sampling, i.e., we sample O(OPT) random sets and include them in the solution.
This ensures that all universe elements contained in (m log n)/OPT sets are covered
with high probability. Since each of the remaining elements is contained in at most
(m log n)/OPT sets, the space needed to represent the input is reduced.

On the other hand, if OPT is small, the algorithm performs element sampling.
Specifically, for a parameter α > 0, the algorithm selects O((OPT · logm)/α) ele-
ments and computes a small cover of those elements. This task can be solved using
onlyO((m ·OPT · logm)/α) space. We then show that any such solution in fact covers
a 1− α fraction of the whole universe. Therefore, it suffices to cover the remaining αn
elements, which can be done using less space since the universe size becomes smaller.
The aforementioned process can be repeated recursively in order to reduce the space
complexity to O(mnδ) for any δ > 0. A variant of the latter approach, element sam-
pling, was previously applied in semi-streaming k-Max Coverage problem [9].

Preliminaries. In this paper we consider the Set Cover problem in the set streaming
model which is based on the following setup appeared in [14].

Definition 1 (Set Streaming Model). In set streaming model we are given E in ad-
vance and sets in S are revealed in a stream.

2 Our algorithms are randomized. Specifically, we assume that the streaming algorithm has ac-
cess to a random oracle r(i) such that the bits r(1), r(2), . . . are i.i.d. symmetric Bernoulli
variables. The approximation guarantees offered by our algorithms are required to hold with
high probability.

4

In the off-line Set Cover model, the universe of elements E and the collection of sets
S are given all at once to the algorithm. In this paper, we assume that we are able to
approximate off-line Set Cover within a factor ρ of its optimal solution. It is known
that under P 6= NP , ρ cannot be smaller than c · lnn where c is a constant [13,1]. At
the same time, setting ρ = 1 (i.e., assuming an exact algorithm for set cover) provides
space/approximation trade-offs without running time considerations. In particular, it es-
tablishes the “upper bounds on lower bounds”, given that communicational complexity
tools for proving lower bounds do not take the running time into account.

A trivial one pass streaming algorithm for the Set Cover problem is to read the
whole stream and store all sets of S in memory. This leads to a ρ-approximation al-
gorithm with O(mn) space. We refer to this algorithm as Simple-Set-Cover algorithm
which is shown in Figure 2 and will be used later in our algorithms. In Section 3, we

Simple-Set-Cover Algorithm 〈〈Set Cover Problem. Input: 〈E ,S〉〉〉
Store the projection of all sets in S over E in memory
Run the off-line algorithm to find a ρ-approximate cover sol
Return sol

Fig. 2. One pass algorithm for set streaming Set Cover(E ,S) using O(m · n) space.

show that any deterministic constant pass constant factor approximation algorithm for
set streaming Set Cover requires Ω(mn) space (see Corollary 1). This implies that the
trivial Simple-Set-Cover algorithm is tight. Thus to break the Ω(mn) space barrier of
the constant pass algorithms for set streaming Set Cover, we should consider random-
ized approaches. In Section 2 we give a randomized constant pass algorithm for the
problem that uses o(mn) memory space. Moreover, Nisan proved that any randomized
protocol of the Set Cover in two-party communication that achieves an approximation
ratio better than logn

2 requires Ω(m) memory space [11].

2 A Constant Pass Algorithm

In this section, we give a randomized algorithm for set streaming Set Cover that has
constant number of passes and consumes Õ(m · nδ) space where δ is an arbitrary con-
stant greater than 4/ log n. To this end, first in Section 2.1, we describe set sampling and
element sampling approaches followed by a two pass randomized (2ρ)-approximation
algorithm that uses Õ(m ·n2/3) space to solve the Set Cover problem. Then, in Section
2.2, we extend the techniques further to obtain our main result as follows.

Theorem 1 (Main Theorem). Suppose that there exists a ρ-approximation algorithm
for the Set Cover problem in the off-line model. For δ = Ω(1/ log n), there exists a ran-
domized O(41/δρ)-approximation algorithm to set streaming Set Cover with O(41/δ)
number of passes that consumes O(m · nδ log2 n logm) bit of memory.

Note that we can assume that δ = Ω(1/ log n) because otherwise the approximation
guarantee of Theorem 1 will be Ω(

√
n) and there exists a single pass 41/δ approxima-

tion algorithm in this case [6].

5

2.1 Sampling Approaches

In this section, we present two key modules in our algorithm: element sampling and set
sampling.

Element Sampling. Let us assume that we are given k, the size of an optimal solution
to Set Cover(E ,S). Let Esmp be a subset of E of sizeO(ρ · kε logm) picked uniformly at
random where ε < 1. We claim that a ρ-approximate cover Csmp of Esmp is an ε-cover
of E with high probability where ε-cover is defined as follows.

Definition 2. A collection of sets C is an ε-cover of a set of elements E if |E∩
⋃
S∈C S| ≥

(1− ε)|E|; in other words, C covers at least 1− ε fraction of E .

Since we have assumed that an optimal cover of E is of size k, there exists a cover
of size at most k for Esmp as well. Let Ssmp = {S ∩ Esmp | S ∈ S} be the collection
of the intersections of all sets in S with Esmp. By calling Simple-Set-Cover(Esmp,S),
in one pass we can find a ρ-approximate cover of Esmp, Csmp, using O(m · |Esmp|) =
O(mρ · kε logm) bits of memory. We say that Esmp is a successful element sampling if
Csmp is an ε-cover of E . The following lemma shows that if Esmp is picked uniformly
at random, then with high probability Esmp is a successful element sampling.

Lemma 1 (Element Sampling Lemma). Consider an instance of Set Cover with E
and S as inputs. Let us assume that an optimal cover of Set Cover(E ,S) has size at
most k. Let Esmp be a subset of E of size ρ · ckε logm chosen uniformly at random and
let Csmp ⊆ S be a ρ-approximate cover for Esmp. Then Csmp is an ε-cover for E with
probability at least 1− 1

m(c−2) .

Proof: Since an optimal solution of Set Cover(E ,S) has size at most k, an optimal
solution of Set Cover(Esmp,Ssmp) is also of size at most k. Thus a ρ-approximate cover
Csmp for Esmp is of size at most kρ.

Let C′ be a subset of S covering less than 1−ε fraction of E . The probability that C′

covers Esmp is at most (1− ε)ρ ckε logm < 1
m

ckρ. Thus by union bound, the probability
that Csmp covers Esmp and Csmp is an ε-cover of E is at least

1−
[kρ∑
i=1

(
m

i

)]
1

mckρ
≥ 1−

[kρ∑
i=1

mi

]
1

mckρ
≥ 1− mkρ+1

mckρ

≥ 1− 1

m(c−2)kρ ≥ 1− 1

mc−2 .

Note that the term
∑kρ
i=1

(
m
i

)
counts the number of all covers of size at most kρ which

can be possibly returned as a solution to Set Cover(Esmp,Ssmp). �

Let Erem be the set of elements remained uncovered after picking Csmp in the first pass.
Lemma 1 showed that with high probability |Erem| ≤ εn. In the second pass, we cover
the set Erem by calling Simple-Set-Cover(Erem,S) using O(m · εn) space. These two
steps together give a randomized two-pass (2ρ)-approximation for the problem that
uses O(m · kρε logm+m · εn) bits of memory which can be optimized by setting ε =√

kρ logm
n . Thus the total required memory of element sampling isO(m ·

√
ρkn logm).

6

Theorem 2. Let (E ,S) be an instance of set streaming Set Cover. Assume that an op-
timal solution to Set Cover(E ,S) has size at most k. Then there exists a two pass ran-
domized (2ρ)-approximation algorithm for the problem that uses O(m ·

√
ρkn logm)

bits of memory.

However, the required memory space of the described algorithm depends on k and
it only performs well for small values of k. In the rest, we remove the dependency on k
in the memory space of our algorithm by introducing another sampling module.

Set Sampling. In the set sampling module, in a single pass, the algorithm picks a subset
of S uniformly at random. In contrast to element sampling technique, set sampling
works effectively for large k. A set sampling Srnd of size c` log n is successful if Srnd
covers all elements that appear in at least m` sets of S. The following lemma shows that
a subset of S of size c` log n picked uniformly at random is a successful set sampling
with high probability.

Lemma 2 (Set Sampling Lemma). Consider an instance (E ,S) of set streaming Set
Cover. Let Srnd be a collection of sets of size c` log n picked uniformly at random. Then,
Srnd covers all elements of E that appear in at least m` sets of S with probability at least
1− 1

nc−1 .

Proof: Let e be an element of E that appears in at least m` sets of S. The probability
that e is not covered by Srnd is at most (1− 1

`)
c` logn < e−c lnn/ ln 2 = n−c/ ln 2. Thus

the probability that there exists an element of E that appears in at least m` sets of S and
is not covered by Srnd is at most n · n−c/ ln 2 ≤ n−c+1. �

Two pass algorithm. Now we describe a randomized two-pass (2ρ)-approximation
algorithm for set streaming Set Cover problem that uses Õ(m · n2/3) space. Let k be a
parameter to be determined later and let OPT be the size of an optimal solution of Set
Cover(E ,S). Consider the following two cases:

1. OPT ≤ k. In this case we apply the element sampling approach to solve Set
Cover(E ,S) using O(m ·

√
ρnk logm) bits (see Theorem 2).

2. OPT ≥ k. In this case we apply the set sampling module. First, we pick a subset
Srnd of S of size ckρ uniformly at random. By Lemma 2, each element e that is
not covered by Srnd with high probability appears in m

ρk · log n sets of S. Thus
the required space to solve the problem over uncovered elements off-line is O(n ·
m
ρk log

2 n) bits; the total number of elements in projection of S over uncovered
elements is O(n · mρk log n) and O(log n) bits is required for representing each of n
elements.

Note that the algorithm does not really need to know OPT. It can run both cases in
parallel and at the end, report the best solution of these two. Since each of these subrou-
tines requires two passes, the whole algorithm can be done in two passes. Moreover, the
total memory space is O(m · (

√
nρk logm+ n

ρk log
2 n)) which is minimized by letting

k = 1
ρ (
n log4 n
logm)1/3. Thus it is a randomized two-pass (2ρ)-approximation algorithm for

set streaming Set Cover using O(m · n2/3(logm log2 n)1/3) bits of memory.

Lemma 3. There exists a randomized two-pass (2ρ)-approximation algorithm for set
streaming Set Cover that uses Õ(m · n2/3) bits of memory.

7

2.2 Our Algorithm

In this section we show that we can improve the result of Lemma 3 further in terms of
required space by applying the sampling modules recursively. Our main claim is that
the Recursive-Sample-Set-Cover algorithm described in Figure 3, achieves the guaran-
tees mentioned in Theorem 1. More precisely, Recursive-Sample-Set-Cover(E ,S, n, δ)
finds an O(41/δρ)-approximate cover of E in O(41/δ) passes using Õ(m · nδ) bits of
memory. We prove Theorem 1 at the end of this section.

In Recursive-Sample-Set-Cover(E ,S, n, δ), first we check whether |E| ≤ nδ . If
|E| ≤ nδ , we call Simple-Set-Cover(E ,S) to find a cover of E in one pass using
O(m · nδ) bits. Otherwise, similar to the two pass algorithm, we combine set sampling
and element sampling modules. However, here we recurse in element sampling module.
In Recursive-Sample-Set-Cover(E ,S, n, δ) we choose a threshold k to decide whether
the size of an optimal cover is large or not. By the proper choice of k and the assumption
that all sampling modules are successful, we show that Case 1 in Recursive-Sample-
Set-Cover returns anO(41/δρ)-approximate cover if the size of an optimal cover of E is
larger than or equal to k. Similarly, we show that in the case that the size of an optimal
cover of E is smaller than k, Case 2 of the algorithm returns an O(41/δρ)-approximate
cover. Moreover, in Case 2 of the algorithm, which corresponds to the element sam-
pling, we recursively invoke two instances of Recursive-Sample-Set-Cover on element
sets of size at most |E|

nδ/2
. At the end, we return the best solution of these two cases.

Lemma 4. Let E ′smp and E ′rem be subsets of E ′ as defined in Recursive-Sample-Set-

Cover(E ′,S, n, δ). Then |E ′smp| =
|E′|
nδ/2

and for large enough c, with high probability,

|E ′rem| ≤
|E′|
cnδ/2

.

Proof: Since k is chosen to be |E ′|/(c2ρ · nδ · logm),

|E ′smp| = c
√
ρ|E ′|k logm =

|E ′|
nδ/2

.

We can rewrite |E ′smp| as

c
√
ρ|E ′|k logm = cρk logm/

√
ρk logm

|E ′|
.

Thus by Lemma 1, a ρ-approximate cover of E ′smp is a (
√

ρk logm
|E′|)-cover of E ′ with

high probability. Hence, with high probability,

|E ′rem| ≤ |E ′| ·

√
ρk logm

|E ′|
=
√
ρ|E ′|k logm =

|E ′|
cnδ/2

.

�
Next we define the successful invocation of Recursive-Sample-Set-Cover.

Definition 3. An invocation of Recursive-Sample-Set-Cover(E ′,S, n, δ) is successful
if either |E ′| ≤ nδ; or Srnd and E ′smp are respectively successful element sampling
and set sampling, and both Recursive-Sample-Set-Cover(E ′smp,S, n, δ) and Recursive-
Sample-Set-Cover(E ′rem,S, n, δ) are successful.

8

Recursive-Sample-Set-Cover 〈〈Set Cover Problem. Input: 〈E ,S, n, δ〉〉〉
Let k = |E|/(c2ρ · nδ logm)
If |E| ≤ nδ
sol← Simple-Set-Cover(E ,S) 〈〈In one pass〉〉
Return sol

〈〈Case 1: handling OPT(E ,S) ≥ k via “set sampling” module〉〉
Let Srnd be a collection of ckρ sets of S picked uniformly at random. 〈〈In one pass〉〉
If each element of E \

⋃
S∈Srnd S appears in less than m logn

k sets of S
solrnd ← Simple-Set-Cover(E \

⋃
S∈Srnd S,S) 〈〈In one pass〉〉

Else 〈〈Unsuccessful set sampling〉〉
solrnd ← Invalid

〈〈Case 2: handling OPT(E ,S) < k via “element sampling” module〉〉
Sample a set of elements Esmp of size c

√
ρ|E|k logm uniformly at random

solsmp ← Recursive-Sample-Set-Cover(Esmp,S, n, δ)
Let Erem = E \

⋃
S∈solsmp

S 〈〈In one pass〉〉
If |Erem| ≤ |E|/(cn

δ
2)

solrem ← Recursive-Sample-Set-Cover(Erem,S, n, δ)
Else 〈〈Unsuccessful element sampling〉〉
solrem ← Invalid

If any of solrnd, solsmp or solrem is Invalid
Return Invalid

Return the best of (Srnd ∪ solrnd) and (solsmp ∪ solrem)

Fig. 3. Recursive-Sample-Set-Cover for the Set Cover problem in set streaming model.

Note that in Recursive-Sample-Set-Cover algorithm we only consider the result of
successful invocations. To this end, we discard the run of the algorithm as soon as a
sampling module fails.

Consider the recursion tree of Recursive-Sample-Set-Cover(E ,S, n, δ). Each inter-
mediate node in the tree has two children. Moreover, for each leaf of the tree, the num-
ber of elements in its corresponding Recursive-Sample-Set-Cover instance is at most
nδ . Thus, we have the following lemma.

Lemma 5. The height the recursion tree of Recursive-Sample-Set-Cover(E ,S, n, δ) is
at most 2/δ and the number of nodes in the tree is less than 2 · 41/δ . Moreover, the
number of nodes in the recursion tree is O(n).

Proof: In the root node of the tree, the element size is n and by lemma 4, the element
size decreases by a factor of at least nδ/2 at each level of recursion. Thus, in level i
we have at most 2i instances of Recursive-Sample-Set-Cover with element size at most

9

n1−iδ/2. Moreover, the element size of the corresponding instances of a leaf is at most
nδ . Thus, we can compute the height of the tree, h, as follows:

n1−
hδ
2 ≤ nδ =⇒ (1− hδ

2
) ≤ δ =⇒ h ≤ 2(1− δ)

δ
≤ 2

δ

Since the height of the tree is at most 2/δ, the total number nodes in the tree is at most
2 · 41/δ . Moreover since δ = Ω(log n), the number of nodes in the tree is O(n). �
The following lemma shows that an invocation of Recursive-Sample-Set-Cover is suc-
cessful with high probability.

Lemma 6. Consider an invocation of Recursive-Sample-Set-Cover(E ,S, n, δ). For suf-
ficiently large c, the invocation is successful with high probability.

Proof of Lemma 6: Consider any particular node of the recursion tree. By Lemma 2
the probability that set sampling performed at that node is successful is at least 1− 1

nc−1

and by Lemma 1, the probability that the element sampling performed at that node is
successful is at least 1 − 1

mc−2 . Therefore, by union bound over all the nodes in the
recursion tree and using the fact that the number of nodes in the recursion tree is O(n)
(See Lemma 5), an invocation of the subroutine is successful with probability at least
1−O(n) · 2

nc−2 ≥ 1− 1
O(nc−3) . �

In the rest we compute the number of passes, approximation guarantee and the
required space of Recursive-Sample-Set-Cover(E ,S, n, δ).

Lemma 7. The number of passes in Recursive-Sample-Set-Cover(E ,S, n, δ) isO(41/δ).

Proof: We show that the number of passes the algorithm makes in each node of the
recursion tree of Recursive-Sample-Set-Cover is at most 3. Therefore, by Lemma 5 the
total number of passes of Recursive-Sample-Set-Cover is O(41/δ).

In each leaf node which corresponds to an invocation of Recursive-Sample-Set-
cover with element size at most nδ , we call Simple-Set-Cover and it is done in one
pass. For intermediate nodes, the algorithm has at most the following three passes.

– In the first pass, the algorithm picks Srnd. In the meantime, it maintains the set of
uncovered elements by so far selected sets. Moreover, for each uncovered element
e, it stores the number of sets in S containing e. These numbers are used to decide
whether the set sampling is successful.

– Next, if Srnd is successful, then the algorithm makes another pass to find a cover
for the elements that are not covered by Srnd via Simple-Set-Cover algorithm.

– Then the algorithm samples a set of elements Esmp and recursively finds a cover of
Esmp. Note that in Recursive-Sample-Set-Cover, we return the indices of the sets in
the selected cover. Thus, to decide whether the element sampling is successful, the
algorithm must make a pass to find the uncovered elements, Erem. If |Erem| ≤ εn,
the module is successful and we recursively find a cover for Erem.

�

Lemma 8. For sufficiently large c, Recursive-Sample-Set-Cover(E ,S, n, δ) algorithm
returns an O(41/δρ)-approximate solution of Set Cover(E ,S) with high probability.

10

Proof: By Lemma 6, an invocation of Recursive-Sample-Set-Cover is successful with
high probability. In the following we only consider successful invocations of Recursive-
Sample-Set-Cover and compute the approximation factor for successful runs.

Consider a successful run of Recursive-Sample-Set-Cover(E ′,S, n, δ). If |E ′| ≤ nδ ,
then the solution returned by the subroutine has size at most ρ · OPT where OPT is the
size of an optimal cover of E .

Otherwise, if an optimum solution for this instance has size at least |E ′|/(c2ρ ·
nδ logm) (Case 1), the size of the cover constructed by the subroutine is at most cρ ·
(|E ′|/c2ρ ·nδ logm)+ ρ ·OPT ≤ (c+1)ρ ·OPT, where the first term denotes the size
of Srnd and the second term denotes the size of the cover the algorithm picked for the
elements that are not covered by Srnd.

If an optimum cover of the instance has size less than |E ′|/(c2ρ · nδ logm) (Case
2), then the union of the covers returned by Recursive-Sample-Set-Cover(E ′smp,S, n, δ)
and Recursive-Sample-Set-Cover(E ′rem,S, n, δ) is a cover of E with small size (for pre-
cise value, see Equation 1). By Lemma 4, |E ′smp| ≤

|E′|
nδ/2

and |E ′rem| ≤
|E′|
cnδ/2

. Since the
size of an optimal cover of each of E ′smp and E ′rem is less than or equal to the size of an
optimal cover of E ′, in this case

Approx(|E ′|, n, δ) ≤ 2×Approx(
|E ′|
nδ/2

, n, δ). (1)

Thus, we can write the following recursive formula for the approximation guarantee of
Recursive-Sample-Set-Cover algorithm.

Approx(|E ′|, n, δ) ≤

{
max{(c+ 1)ρ, 2×Approx(|E ′|/nδ/2, n, δ)} if |E ′| > nδ

ρ if |E ′| ≤ nδ

(2)

By Lemma 5, the height of the recursion tree of our algorithm is 2/δ. Hence, a success-
ful run of the algorithm returns an O(41/δρ)-approximate cover. �

Lemma 9. Consider a successful run of Recursive-Sample-Set-Cover(E ′,S, n, δ). Af-
ter picking Srnd, the required memory space to call Simple-Set-Cover(E ′\

⋃
S∈Srnd S,S)

is O(m · nδ logm log2 n) bits.

Proof: As defined in Figure 3, Srnd is a collection of sets selected uniformly at ran-
dom and |Srnd| = ckρ where k = |E ′|/(c2ρ · nδ logm). In a successful set sampling,
Srnd covers all elements that appear in at least m

kρ · log n sets of S. Hence the re-
quired space to run Simple-Set-Cover(E ′ \

⋃
S∈Srnd S,S) is |E ′| · mkρ log n · log n =

c2m · nδ log2 n logm. Note that the additional log n in the memeory space is for repre-
senting the elements; log n bits is required to represent each element. �

Lemma 10. Recursive-Sample-Set-Cover(E ,S, n, δ) uses O(m · nδ logm log2 n) bits
of memory to solve set streaming Set Cover(E ,S) where n = |E|.

Proof: We prove by induction that the space Recursive-Sample-Set-Cover(E ,S, n, δ)
requires is less than c1(m · nδ + |E|) logm log2 n for a large enough constant c1.

11

It is straightforward to see that the induction hypothesis holds for |E ′| ≤ nδ . In
this case we call Simple-Set-Cover(E ′,S) that can be executed using m · nδ bits. Lets
assume that the induction hypothesis holds for instances with |E| < n′. In the following
we show that the induction hypothesis holds for |E ′| = n′ too.

In Recursive-Sample-Set-Cover(E ′,S, n, δ), first we perform the set sampling mod-
ule and in this case the required space is bounded by the required space to store Srnd
which is |Srnd|·logm plus the required space to run Simple-Set-Cover(E\

⋃
S∈Srnd S,S)

which is O(m · nδ logm log2 n) (see Lemma 9). We assume that the required space for
Simple-Set-Cover(E \

⋃
S∈Srnd

S,S) is c2 ·m · nδ logm log2 n (c2 is computed in the
proof of Lemma 9). Thus the total space to run set sampling

ckρ logm+ c2 ·m · nδ logm log2 n ≤ n1−δ/c+ c2 ·m · nδ logm log2 n

≤ c1 ·m · nδ logm log2 n

which holds for large enough c1. After executing the set sampling module, we only
need to keep the constructed cover which requires at most |E ′| logm bits (the size of
the cover is at most |E ′| and for each set in the cover we keep its index).

Then we perform the element sampling module. To this end, first we run Recursive-
Sample-Set-Cover(E ′smp,S, n, δ) using c1(m · nδ+ |E ′smp|) logm log2 n bits (by induc-
tion hypothesis). After constructing a cover for E ′smp, we only keep the cover of E ′smp

which requires at most |E ′smp| · logm bits. Next, if E ′smp is a successful element sam-
pling, we cover E ′rem recursively; otherwise, we return Invalid.

Thus the required space of Recursive-Sample-Set-Cover(E ,S, n, δ) is

max{c1 ·m · nδ logm log2 n, |E ′| logm+ c1 · (m · nδ +
|E ′|
nδ/2

) logm log2 n, (3)

(|E ′|+ |E ′|/nδ/2) logm+ c1 · (m · nδ + |E ′|/nδ/2) logm log2 n}
= (|E ′|+ |E ′|/nδ/2) logm+ c1 · (m · nδ + |E ′|/nδ/2) logm log2 n

≤ c1 · (m · nδ + |E ′|) logm log2 n (for large enough c1)

In Equation 3, the first term denotes the required space while the algorithm is running
the set sampling module. The second term denotes the required space for the case that
the execution of the set sampling module is completed and the algorithm is running the
first recursive call of the element sampling module. The last term is the required memory
space while the algorithm is running the second recursive call of the element sampling
module. Thus induction hypothesis holds for |E ′| = n′ and the proof is complete.

�
Theorem 1 follows from Lemma 8, Lemma 7 and Lemma 10.

3 Lower Bounds

In this section, we give some lower bound results for the Set Cover problem in the set
streaming model. Specifically, we discuss deterministic protocols and we show that one
cannot give a constant pass algorithm with o(mn) memory space that achieves a con-
stant factor approximation for set streaming Set Cover. Our lower bound results follow

12

from some results in the two-party communication model. In particular we consider the
following variant of Set Disjointness problem in two-party communication model.

Definition 4 ((Sparse) Set Disjointness Problem). In Set Disjointness(n), each of Al-
ice and Bob receives a subset of {1, . . . , n}, SA and SB . The goal is to determine
whether SA and SB are disjoint or not. In Sparse Set Disjointness(n, k), each of two
parties receives a subset of size at most k of {1, . . . , n} and the goal is to determine
whether their sets intersect or not.

Set Disjointness(n) is a well-studied problem in communication complexity and it
is known that the best protocol (up to constant) in term of bits of communication is
the trivial one in which Alice sends her entire input to Bob. Moreover, using the rank
method, it has been shown that any deterministic protocol for Sparse Set Disjointness(n, k)
requires Ω(m log(n/k)) bits of communication.

Nisan [11] proved that any randomized protocol approximating Set Cover in two-
party communication with a factor better than logn

2 has communication complexity
Ω(m). In this section, exploiting the techniques of [11], we get Ω(mn) lower bound
for the memory space of deterministic two-party protocols approximating Set Cover
within a constant factor.

Definition 5 (r-covering property [10,11]). Let S be a collection of subsets of {1, . . . , n}.
The collection S has the r-covering property if for every collection A ⊆ {S | S ∈
S or S ∈ S} of size at most r, A does not cover {1, . . . , n} unless a set S and its
complement are both selected in A.

Lemma 11 (From [11]). For any r ≤ log n−O(log log n), there exists a collection S
of subsets of {1, . . . , n} that satisfies the r-covering property such that |S| ≥ en/(r2r).

Combining the known lower bound of Sparse Set Disjointness(n, k) with the r-covering
property, we achieve the following lower bound result for deterministic protocols of Set
Cover in two-party communication.

Theorem 3. Any deterministic α-approximation protocol for Set Cover(E ,SA,SB) in
two-party communication requires Ω(|SA ∪ SB | · |E|) communication if α = O(1).

Proof: Given an instance (xA, xB) of Sparse Set Disjointness(n, k), we construct the
following corresponding instance of two-party Set Cover(E ,SA,SB).
Let r = 2α and let S = {S1, . . . , Sn} be a collection of subsets of {1, . . . , p} satisfying
r-covering property. By Lemma 11, it is enough to have |S| = ep/(r2

r) which implies
that p = r2r lnn. Since r = O(1), we have p = O(log n).

Define E = {1, . . . , p}. Let SA be the collection of sets that Alice owns and let SB
denote the collection of sets owned by Bob. We define SA = {Si | xA[i] = 1} and
SB = {Si | xB [i] = 1}.
The r-covering property of S guarantees that the size of an optimal cover of E , C ⊆ S,
is either 2 (the case that C contains both S and S for a set S ∈ S) or at least r. Note
that xA and xB intersect iff the size of an optimal cover of E is 2. Thus any protocol
for two party Set Cover(E ,SA,SB) with approximation ratio smaller than r/2 solves
Sparse Set Disjointness(n, k) exactly.

13

It has been shown that Sparse Set Disjointness(n, k) has communication complex-
ity Ω(k log(2n/k)). If we pick k such that k = O(n1−ε) for some constant ε, then
|E| = p = O(log n) = O(log 2n

k). Thus by the known lower bound of Sparse Set
Disjointness(n, k) in two party communication, two-party Set Cover(E ,SA,SB) re-
quires Ω(k log(2n/k)) = Ω(k · p) = Ω((|SA| + |SB |) · |E|) bits of communication.

�

Corollary 1. Any deterministic constant factor approximation algorithm for set stream-
ing Set Cover with constant number of passes requires Ω(mn) space.

The following is based on the lower bound of [11].

Corollary 2. Any randomized constant pass algorithm that approximates set streaming
Set Cover(E ,SA,SB) within a factor smaller than logn

2 uses Ω(|SA ∪ SB |) space.

Acknowledgment. The work was supported in part by NSF grants CCF-1161626 and
CCF-1065125, DARPA/AFOSR grant FA9550-12-1-0423, Packard Foundation, Simons
Foundation and MADALGO — Center for Massive Data Algorithmics — a Center of
the Danish National Research Foundation.

References

1. Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms, 2(2):153–177, 2006.

2. Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-reduce. In Proc.
of WWW, pages 231–240. ACM, 2010.

3. Graham Cormode, Howard Karloff, and Anthony Wirth. Set cover algorithms for very large
datasets. In Proceedings of the 19th ACM international conference on Information and
knowledge management, pages 479–488. ACM, 2010.

4. Danny Dolev and Tomás Feder. Multiparty communication complexity. In Proc. of IEEE
FOCS, pages 428–433. IEEE, 1989.

5. Pavol Ďuriš and José DP Rolim. Lower bounds on the multiparty communication complexity.
Journal of Computer and System Sciences, 56(1):90–95, 1998.

6. Yuval Emek and Adi Rosén. Semi-streaming set cover. In Proc. of ICALP, 2014.
7. Tal Grossman and Avishai Wool. Computational experience with approximation algorithms

for the set covering problem. European Journal of Operational Research, 101(1):81–92,
1997.

8. Sudipto Guha and Andrew McGregor. Tight lower bounds for multi-pass stream computation
via pass elimination. In Proc. of ICALP, pages 760–772. Springer, 2008.

9. Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algo-
rithms in mapreduce and streaming. In Proc. of SPAA, pages 1–10. ACM, 2013.

10. Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, 1994.

11. Noam Nisan. The communication complexity of approximate set packing and covering. In
Proc. of ICALP, pages 868–875. Springer, 2002.

12. Jeff M Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multi-
party communication complexity, made easy. In Proc. of ACM-SIAM SODA, pages 486–501.
SIAM, 2012.

14

13. Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In Proc. of ACM STOC, pages 475–
484. ACM, 1997.

14. Barna Saha and Lise Getoor. On maximum coverage in the streaming model & application
to multi-topic blog-watch. In SDM, pages 697–708, 2009.

15. David P Woodruff and Qin Zhang. When distributed computation is communication expen-
sive. In Distributed Computing, pages 16–30. Springer, 2013.

A Multiparty Communication Algorithm for Set Cover

In this section, we describe how our algorithm can be applied in the multi-party com-
munication model where the input is distributed among a set of p parties and the goal
is to compute a function over the input, while minimizing the total amount of com-
munication. It is assumed that there is coordinator which can communicate with each
of the parties, however the parties do not communicate with each other directly. This
model has been widely studied before (see for example [5,4,12]). Note that this model
is an example of the number-in-hand model in which each party sees its own input, as
opposed to the number-on-forehead model where each party can see the inputs of all
the other parties except his own.

Our model. In coordinator model there are p parties P1, . . . , Pp and one coordina-
tor. The coordinator can communicate with each of the parties, but the parties cannot
communicate with each other. Also, only synchronous executions are considered: in
even rounds, each party receives a message from the coordinator, performs some local
computation, and sends a message back to the coordinator. In odd rounds, the coordina-
tor receives messages from each party, performs some computation and broadcasts the
same message to all of the parties. We consider a restricted variant of the coordinator
model in which each party executes the same algorithm.

The problem and our result. Let E = {1, · · · , n} be the element set and let S be
a collection of m sets and let S1, . . . ,Sp be a partitioning of S such that the party i
only has the collection Si. The goal of the algorithm is for the coordinator to output the
indices of the sets in S that constitute a minimum cover for E .

We are interested in the total number of rounds, approximation factor and total
amount of communication per round. Note that the communication of odd rounds is
counted as the size of the single message broadcasted from the coordinator, and the
communication of even rounds is counted as the total size of the messages from all
the parties to the coordinator. Assuming the described model, we have the following
theorem which mainly follows from Theorem 1.

Theorem 4. There is a randomizedO(41/δ)-round,O(41/δρ)-approximation algorithm
to Set Cover(E ,S) with total communication of Õ(m · nδ + p · n) in each round.

Here ρ is the approximation ratio of the off-line Set Cover achieved by the coordinator.

Our algorithm. We can show that it is possible for the coordinator to run the Recursive-
Sample-Set-Cover such that its total communication with the parties is Õ(m·nδ) in each

15

round. The algorithm only needs to access the sets in one of the following three cases.
If |E| ≤ nδ:

1. First the coordinator broadcasts E to the parties using O(nδ log n) bits.
2. Each party Pi, sends the projection of it sets on E back to the coordinator, i.e.,
{S ∩ E | S ∈ Si}. This needs at most O(mnδ log n) bits of communication.

Set Sampling:

1. To choose a collection of ckρ sets uniformly at random, Srnd, the coordinator sends
a constant size message to all parties to initiate the set sampling module.

2. Then each party Pi generates and sends a random number corresponding to each
of its sets which is a vector of size |Si| of random numbers. Note that it is enough
for the random numbers to be in the range (1, . . . ,mc) for some constant c so that
with high probability, the numbers for all the sets in S do not collide. This needs at
most O(m logm) bits of communication.

3. The coordinator finds a threshold thr such that there are exactly ckρ numbers below
thr among the received numbers and broadcasts thr. It requires O(logm) bits.

4. Each party Pi sends back a bit vector of size n showing which elements are covered
by the sets in Si whose assigned random number is less than thr. This needs at most
O(p · n) bits of communication.

5. The coordinator broadcasts the set of uncovered elements Erem using O(n log n)
bits.

6. Each party Pi returns for each uncovered element e, the number of sets in Si that
contains e. This needs at most O(p · n logm) bits of communication.

7. The coordinator checks whether Srnd is successful. In the case of success, it sends
“success” message using O(1) bits.

8. In the case of success, each of the parties projects its sets on the uncovered ele-
ments and sends it back to the coordinator. Then coordinator solves the Set Cover
problem over the uncovered elements off-line. By Lemma 9, this needs at most
O(mnδ logm log2 n) bits of communication.

Element Sampling. The element sampling requires recursively invoking the algorithm
for the instances of the Set Cover problem with smaller element size. The coordinator
samples a set of elements Esmp and solves the problem recursively for Esmp. Then the
coordinator checks whether Esmp was successful and in this case of success, it solves
the problem recursively for the set of uncovered elements Erem.

By the analysis of Recursive-Sample-Set-Cover in Section 2, it is straightforward to
check that the total communication in each round is Õ(m · nδ + p · n). Also the total
number of rounds is constant per each recursive call of Recursive-Sample-Set-Cover.
Therefore similar to the proof of Lemma 7, the total number of rounds of the algorithm
is O(41/δ). Hence the total communication of the algorithm is Õ(41/δ(m ·nδ+p ·n)).

	On Streaming and Communication Complexity of the Set Cover Problem
	Introduction
	A Constant Pass Algorithm
	Sampling Approaches
	Our Algorithm

	Lower Bounds
	Multiparty Communication Algorithm for Set Cover

